1. Solve: $2x^{\frac{2}{5}} + 3x^{\frac{1}{5}} = -1$.

2. Write the logarithm as the sum and/or difference of logarithms: $\log_3 \sqrt[5]{\frac{x^3y^2}{z^4}}$.

3. Let $f(x) = -2x^2 + 8x - 10$. (i) write $f(x) = a(x - h)^2 + k$, (ii) vertex, (iii) axis of symmetry, (iv) max or min function value, (v) x-intercept, (vi) y-intercept, (vii) sketch.

- (i) _____
- (ii) _____
- (iii) _____
- (iv) _____
- (v) _____
- (vi) _____
- 4. Write the logarithmic expression as one logarithm: $3\log_c(x+1) 2\log_c(x+2) + \log_c x \frac{1}{2}\log_c z$.

- 5. Let f(x) = 2x+1 and $g(x) = x^2 1$.
- a. Find $(f \circ g)(-2)$.

c. Find $(g \circ f)(x)$.

b. Find (f-g)(x).

d. Find domain of $\left(\frac{f}{g}\right)(x)$.

6. Let $f(x) = \sqrt[3]{x+4} - 5$ Find the inverse function of f(x).

7. Let $g(x) = 4^{x-1} + 2$. (i) Graph the function by transformation, (ii) Label asymptote, (iii) State domain and range.

8. Solve: $\log_2(x-7) + \log_2 x = 3$.

10. If not checked, the population of a colony of bed bugs will grow exponentially at a rate of 65% per week. If a colony currently has 50 bedbugs, how many will there be in 6 weeks?