

**DEPARTMENT**

**FINAL**

**MATH 125**

**EXAMINATION**

**Do NOT write on the test!**

**Do all work on provided  
scratch paper.**

**Put your answers on scantron.**

**NO CELL PHONES**

**ALLOWED!!!**

**VERSION C TEST #\_\_\_\_\_**

1. A solution of 66% fertilizer is to be mixed with a solution of 26% fertilizer to form 160 liters of a 43% solution. How many liters of the 66% solution must be used?

[A] 104      [B] 78      [C] 97      [D] 68

2. Train A leaves a station traveling at 40 miles per hour. Four hours later train B leaves the same station traveling in the same direction at 60 miles per hour. How long does it take for train B to catch up to train A?

[A] 10 hr      [B] 11 hr      [C] 9 hr      [D] 8 hr

3. Solve.  $|3x - 1| \geq 1$

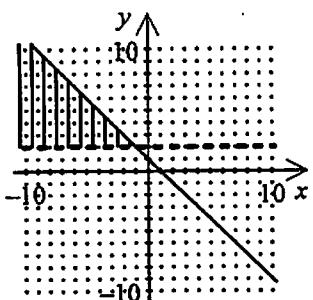
[A]  $\left\{x \mid x < 0 \text{ or } x > \frac{2}{3}\right\}$       [B]  $\left\{x \mid 0 \leq x \leq \frac{2}{3}\right\}$   
[C]  $\left\{x \mid x \leq 0 \text{ or } x \geq \frac{2}{3}\right\}$       [D] none of these

4. Determine the equation of the line, in standard form, that contains the points.  $(3, -7)$  and  $(-4, -3)$

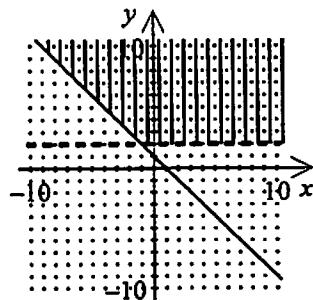
[A]  $-4x + 7y = -37$       [B]  $-4x - 7y = 37$   
[C]  $-4x - 3y = -37$       [D]  $-7x - 4y = 37$

5. Solve the system:  $3x - y - 2z = 5$   
 $2x + y + 3z = 6$   
 $6x - y - 4z = 9$

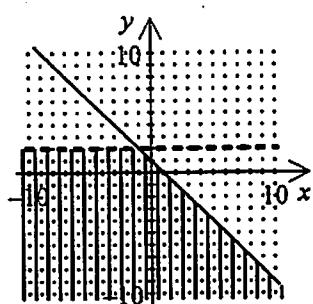
[A]  $(2, -1, 1)$       [B]  $(1, -14, 6)$       [C]  $(2, 1, 0)$       [D] none of the above.


6. A coffee house blended 15 pounds of espresso flavored coffee beans with 5 pounds of vanilla flavored coffee beans. The 20 pound mixture cost \$175. A second mixture included 6 pounds of espresso flavored coffee beans and 9 pounds of vanilla flavored coffee beans. The 15 pound mixture cost \$126. Find the cost per pound of the espresso and vanilla flavored coffee beans.

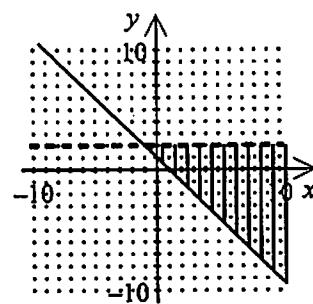
[A] espresso: \$8; vanilla: \$9      [B] espresso: \$7; vanilla: \$6  
[C] espresso: \$9; vanilla: \$8      [D] espresso: \$6; vanilla: \$7


7. Graph the solution set.  $y \geq -x + 1$

$$y > 2$$


[A]




[B]



[C]



[D]



8. Divide.  $(2x^3 - 3x + 9) \div (x - 2)$

[A]  $2x^2 + x + 11 + \frac{22}{x-2}$

[B]  $2x^2 + 4x - 11 - \frac{16}{x-2}$

[C]  $2x^2 + x - 2 + \frac{5}{x-2}$

[D]  $2x^2 + 4x + 5 + \frac{19}{x-2}$

9. Solve by factoring.  $10x^2 + 13x - 3 = 0$

[A]  $\frac{1}{5}, -\frac{3}{2}$

[B]  $\frac{1}{5}, \frac{3}{2}$

[C]  $-\frac{1}{5}, -\frac{3}{2}$

[D]  $-\frac{1}{5}, \frac{3}{2}$

10. Determine the domain of the function.  $g(x) = \frac{4x}{x(x-4)}$

[A]  $\{x \mid x \neq 4, x \neq 0\}$

[B]  $\{x \mid x \neq 2\}$

[C]  $\{x \mid x \neq \pm 4, x \neq 0\}$

[D]  $\{x \mid x \neq \pm 2\}$

Simplify.

11.  $\frac{x+1}{4x+y} \cdot \frac{16x^2 - y^2}{3x^2 - 2x - 5}$

[A]  $\frac{4x+y}{-2x-2}$

[B]  $-\frac{4x-y}{2}$

[C]  $\frac{4x-y}{3x-5}$

[D]  $\frac{4x^2 - y^2}{3x-5}$

12.  $\frac{2}{x+3} + \frac{5}{x-3}$

[A]  $\frac{7}{x^2-9}$

[B]  $\frac{7x+9}{x^2-9}$

[C]  $\frac{7x+9}{7}$

[D]  $\frac{7}{x+3}$

13. 
$$\begin{array}{r} 3 \\ \hline x+3 \\ \hline 1 \\ \hline x-5 \end{array}$$

[A]  $\frac{-3x}{-4x-12}$

[B]  $\frac{-3x}{-5x^2-14x+3}$

[C]  $\frac{-3x+15}{x+3}$

[D]  $\frac{15x-3}{-5x+15}$

14. Solve.  $1 - \frac{4}{x+2} = \frac{16}{x^2-4}$

[A] 6

[B] -6 or -2

[C] -2 or 6

[D] no solution

15. At noon a horse and buggy headed north traveling 8 miles per hour. Two hours later, a roadster headed south from the same location driving 50 miles per hour. At which time will the horse and buggy be 132 miles from the roadster?

[A] 4:00 P.M.

[B] 3:45 P.M.

[C] 3:50 P.M.

[D] 4:10 P.M.

16. The price per person of renting a bus varies inversely with the number of people renting the bus. It costs \$19 per person if 23 people rent the bus. How much will it cost per person if 39 people rent the bus? Round to the nearest cent.

[A] \$47.21

[B] \$14.30

[C] \$32.22

[D] \$11.21

17. Rewrite the exponential expression as a radical expression.

$$x^{4/3}$$

[A]  $\sqrt{x^{4/3}}$

[B]  $\sqrt[3]{x^{4/3}}$

[C]  $\sqrt[3]{x^4}$

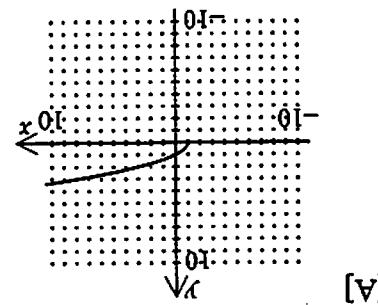
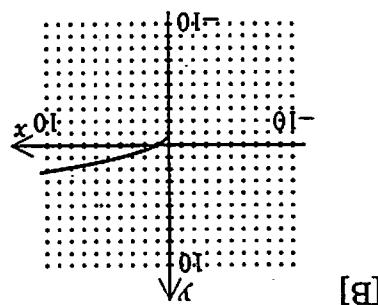
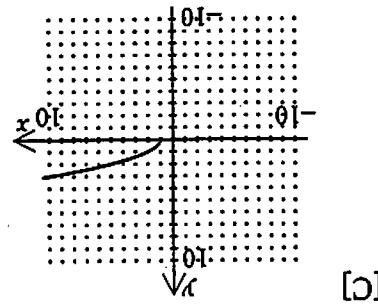
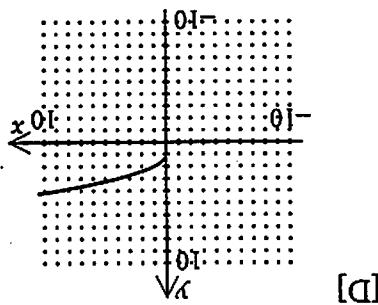
[D]  $\frac{1}{\sqrt[3]{x^4}}$

[C]  $2+2i, 2-2i$

[D]  $-2+2i, -2-2i$

[A]  $-2+4i, -2-4i$

[B]  $2+4i, 2-4i$





22. Solve using the quadratic formula.  $x^2 - 4x + 8 = 0$

[A]  $-\frac{9}{8} + \frac{29}{8}i$    [B]  $\frac{9}{8} - \frac{29}{8}i$    [C]  $-\frac{29}{8} - \frac{29}{8}i$    [D]  $\frac{9}{8} + \frac{29}{8}i$

21. Simplify.  $\frac{1+2i}{5+2i}$

$\sqrt{x+14} = x - 16$

20. Solve.   [A] 22, 11   [B] 11   [C] 22   [D] no solution



19. Graph:  $f(x) = \sqrt{x-1}$

[C] domain  $\{x | x \geq 0\}$

[B] domain  $\{x | x \leq 0\}$

[D] domain  $\{x | x \geq 9\}$

[A] domain  $\{x | x \leq -9\}$

18. Determine the domain of the function  $f(x) = \sqrt{x+9} + 4$ .

23. Solve.  $x^4 - 18x^2 + 17 = 0$

[A]  $1, \sqrt{17}$

[B]  $\pm 1, \pm \sqrt{17}$

[C]  $\pm 1, \pm \sqrt{17}$

[D]  $1, 17$

24. When a rocket is shot into the air, its height  $h$ , in feet above the ground, is a function of time  $t$ , in seconds. The height of the rocket can be found using the formula  $h(t) = 176t - 16t^2$ .

After how many seconds will the rocket be at a height of 448 feet?

[A] 11

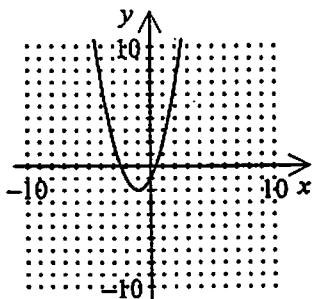
[B] 3 and 8

[C] 4 and 7

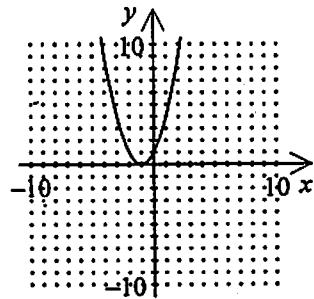
[D] 4

25. Solve.  $x^2 + 7x \geq 18$

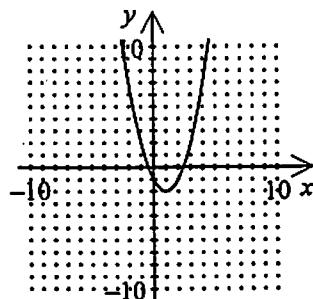
[A]  $\{x \mid -2 \leq x \leq 9\}$


[B]  $\{x \mid -9 \leq x \leq 2\}$

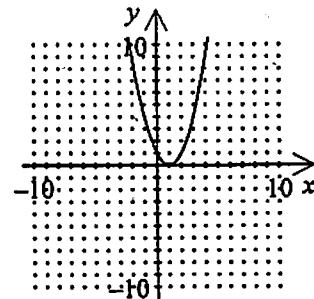
[C]  $\{x \mid x \leq -2 \text{ or } x \geq 9\}$


[D]  $\{x \mid x \leq -9 \text{ or } x \geq 2\}$

26. Find the graph of the equation.  $f(x) = x^2 - 2x - 1$


[A]




[B]



[C]

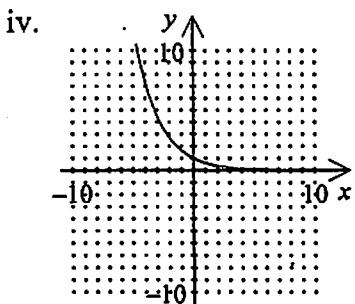
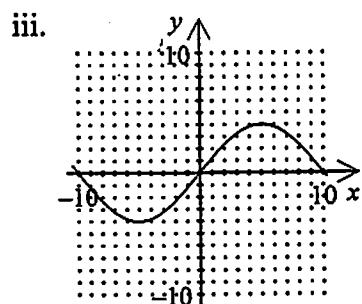
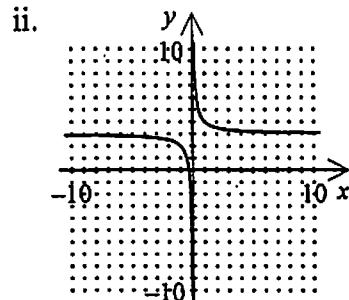
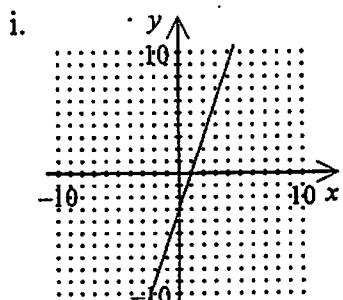


[D]



27. For the pair of functions, find  $(g \circ f)(x)$ .

$f(x) = x + 6, g(x) = \sqrt{x+5}; x \geq -5$





[A]  $\sqrt{x+5} + 6$

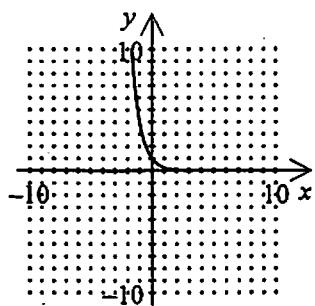
[B]  $\sqrt{x+6} - 5$

[C]  $\sqrt{x+11}$

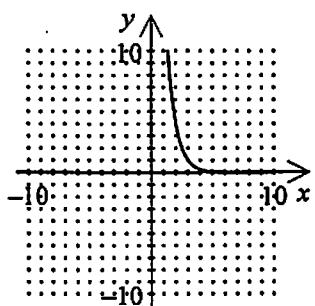
[D]  $\sqrt{x+5}$

28. Which of the following are one-to-one functions?

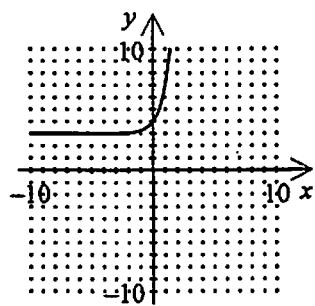



[A] ii and iv only      [B] i and iv only      [C] iv only      [D] i, ii and iv only

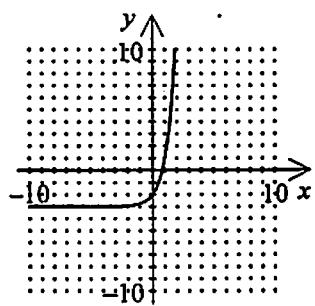
29. Find the inverse of the function.  $y = f(x) = 5x - 2$


[A]  $f^{-1}(x) = \frac{x+2}{5}$     [B]  $f^{-1}(x) = \frac{x-5}{5}$     [C]  $f^{-1}(x) = \frac{5x+2}{5}$     [D]  $f^{-1}(x) = -2x+5$

30. Identify the graph of the function.  $f(x) = 4^x + 3$


[A]




[B]



[C]



[D]



31. Identify the logarithmic expression written in exponential form.  $\log_3 \frac{1}{27} = -3$

[A]  $3^{-3} = 27$

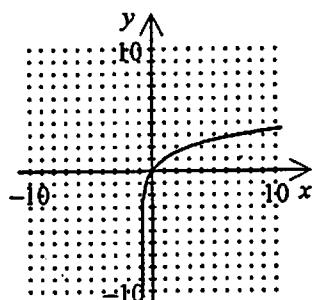
[B]  $3^{-3} = \frac{1}{27}$

[C]  $3^3 = -\frac{1}{27}$

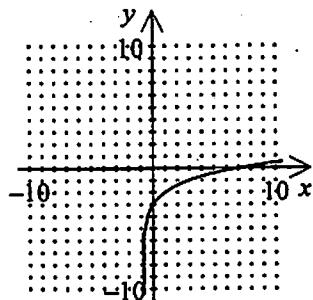
[D]  $3^3 = -27$

32. Find the equivalent form of the logarithmic expression.  $\log_a xy^4 z^3$

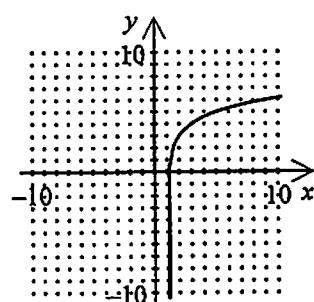
[A]  $\frac{\log_a x + 4 \log_a y}{3 \log_a z}$


[B]  $\log_a x + 4 \log_a y - 3 \log_a z$

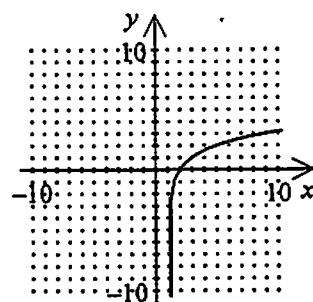
[C]  $\log_a 8 + \log_a xy - 3 \log_a z$


[D] none of these

33. Identify the graph of the logarithmic function.  $f(x) = \log_2(x-1)$


[A]




[B]



[C]



[D]



Solve for  $x$ .

34.  $67^{5x+2} = 36$       [A] -0.2295      [B] -0.2925      [C] -0.1653      [D] 0.5075

35.  $\log_3(x-1) - \log_3(x-4) = \log_3 4$       [A]  $-\frac{1}{3}$       [B] 5      [C] 0      [D] 1

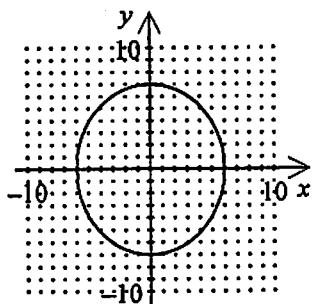
36. The number of bacteria present in a culture after  $t$  minutes is given as  $B = 10e^{kt}$ . If there are 1031 bacteria present after 4 minutes, find  $k$ .

[A] 1.159      [B] 4.636      [C] 18.543      [D] 1.147

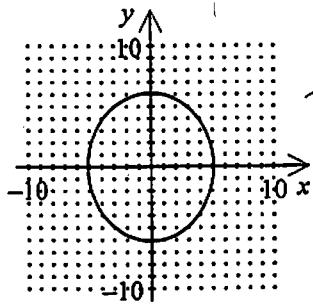
37. Identify the standard form of the equation of the circle.

$$x^2 + 12x + y^2 - 4y + 27 = 0$$

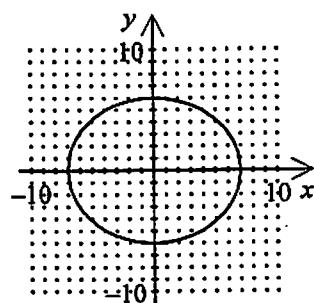
[A]  $(x-6)^2 + (y+2)^2 = \sqrt{13}$


[B]  $(x+2)^2 + (y-6)^2 = 13$

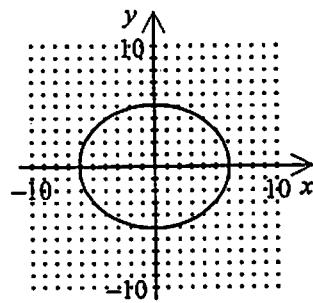
[C]  $(x+2)^2 + (y-6)^2 = \sqrt{13}$


[D]  $(x+6)^2 + (y-2)^2 = 13$

38. Identify the graph of the ellipse given by the equation.  $\frac{x^2}{25} + \frac{y^2}{36} = 1$


[A]




[B]



[C]



[D]



39. Solve the system.  $4x^2 + 3y^2 = 147$

$$5x^2 + 3y^2 = 183$$

[A]  $(1, 5), (1, -5), (-1, 5), (-1, -5)$

[B]  $(1, 5), (1, -5)$

[C]  $(6, 1), (6, -1), (-6, 1), (-6, -1)$

[D] no real solution

40. Write in expanded form.

$$(a - 2b)^4$$

[A]  $a^4 + 8a^3b + 24a^2b^2 + 32ab^3 + 16b^4$

[B]  $a^4 - 8a^3b + 24a^2b^2 - 32ab^3 + 16b^4$

[C]  $a^4 - 8a^3b + 12a^2b^2 - 8ab^3 + 16b^4$

[D]  $a^4 + 8a^3b + 12a^2b^2 + 8ab^3 + 16b^4$