

DEPARTMENT FINAL EXAMINATION MATH 125
5/07 VERSION 1 TEST #
DO NOT WRITE ON EXAM

1. A solution of 57% vinegar is to be mixed with a solution of 22% vinegar to form 70 liters of a 42% solution. How many liters of the 57% solution must be used?

[A] 52 [B] 37 [C] 40 [D] 50

2. Solve. $|x+3| > 2$

[A] $\{x \mid -5 < x < -1\}$ [B] $\{x \mid x \leq -5 \text{ or } x \geq -1\}$
 [C] $\{x \mid x < -5 \text{ or } x > -1\}$ [D] $\{x \mid -5 \leq x \leq -1\}$

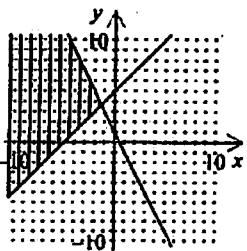
3. Determine the equation of the line, in slope-intercept form, that contains the points. (7, 2) and (1, -7)

[A] $y = -\frac{2}{3}x + \frac{17}{2}$ [B] $y = -\frac{2}{3}x + \frac{2}{17}$ [C] $y = \frac{3}{2}x - \frac{17}{2}$ [D] $y = -\frac{3}{2}x - \frac{2}{17}$

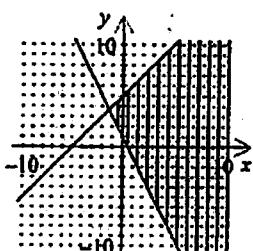
4. Find the equation of the line, in slope-intercept form, that is perpendicular to $-7x - 4y = 4$ and contains (-6, 5).

[A] $y = \frac{4}{7}x + \frac{59}{7}$ [B] $y = \frac{4}{7}x + \frac{11}{7}$ [C] $y = -\frac{4}{7}x + \frac{11}{7}$ [D] $y = \frac{7}{4}x + \frac{31}{2}$

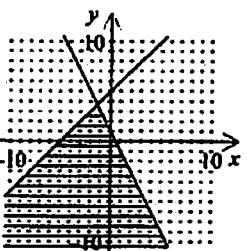
5. If the (x,y,z) is the solution to the linear system: $\begin{array}{l} 2x + 2y + 3z = 13 \\ -3x + 4y - z = 5 \\ 5x - 3y + z = 2 \end{array}$
 then $x + y + z = ?$

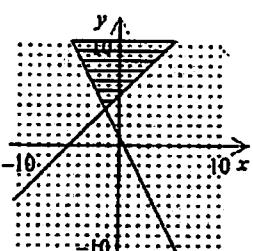

[A] $x + y + z = -7$ [B] $x + y + z = 6$ [C] $x + y + z = -14$ [D] none of these

6. Evaluate the determinant:
$$\begin{vmatrix} 1 & -1 & 2 \\ 3 & 2 & 1 \\ 1 & 0 & 4 \end{vmatrix}$$


[A] 12 [B] 0 [C] 15 [D] -8

7. Graph the solution set. $y \leq x+5$
 $y \geq -2x+1$


[A]


[B]

[C]

[D]

8. Simplify. $(-2x^3 - 2x - 4) \div (x - 3)$

[A] $-2x^2 - 8x + 24 + \frac{68}{x-3}$

[B] $-2x^2 - 6x - 20 - \frac{64}{x-3}$

[C] $-2x^2 - 6x + 16 + \frac{42}{x-3}$

[D] $-2x^2 - 8x - 28 - \frac{84}{x-3}$

9. Divide by using synthetic division. $\frac{x^4 - 1}{x - 1}$

[A] $x^3 + x^2 + x + 1$

[B] $x^3 - x^2 + x - 1$

[C] $x^4 + x^3 + x^2 + x + 1$

[D] $x^3 + x^2 + x - 1$

10. Find the x-intercepts of $y = f(x) = 6x^2 + 7x + 2$

[A] $(-\frac{2}{3}, 0)$ and $(\frac{1}{2}, 0)$

[B] $(\frac{2}{3}, 0)$ and $(\frac{1}{2}, 0)$

[C] $(-\frac{2}{3}, 0)$ and $(-\frac{1}{2}, 0)$

[D] $(2, 0)$ and $(-3, 0)$

11. Determine the domain of the function. $f(x) = \frac{x^2 - x - 2}{x^2 + x - 30}$

[A] $\{x | x \neq -6 \text{ and } x \neq 5\}$ [B] $\{x | x \neq 6 \text{ and } x \neq -5\}$
[C] $\{x | x \neq -2 \text{ and } x \neq 1\}$ [D] $\{x | x \neq 2 \text{ and } x \neq -1\}$

Simplify.

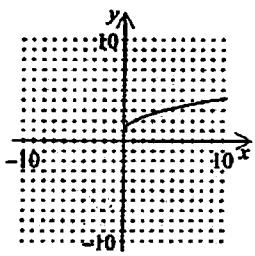
12. $\frac{x+3}{x-3} \div \frac{x^2-9}{3-x}$ [A] $\frac{1}{5-x}$ [B] $\frac{1}{x-3}$ [C] $\frac{x+3}{x-3}$ [D] $\frac{1}{3-x}$

13. $\frac{9}{x^2-4x+3} - \frac{2}{x-3}$
[A] $\frac{7}{x^2-5x+6}$ [B] $\frac{-2x+7}{x^2-4x+3}$ [C] $\frac{-2x+8}{x^2-4x+3}$ [D] $\frac{-2x+11}{x^2-4x+3}$

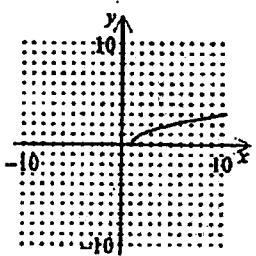
14. Solve. $1 - \frac{9}{x-3} = -\frac{54}{x^2-9}$
[A] -6 or 3 [B] 3 or 6 [C] 6 [D] no solution

15. Rewrite the radical expression as an exponential expression.
 $\sqrt[4]{2x^3}$

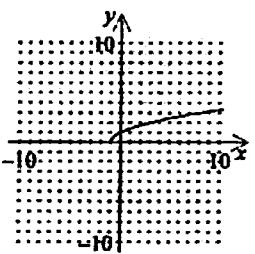
[A] $2x^{\frac{3}{4}}$ [B] $(2x^3)^{\frac{1}{4}}$ [C] $\frac{1}{2x^{\frac{3}{4}}}$ [D] $\frac{1}{2x^{\frac{1}{4}}}$

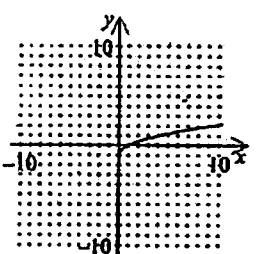

16. Simplify. $\sqrt[3]{f^{15}}$ [A] f^{12} [B] f^{45} [C] f^3 [D] f^5

17. Determine the domain of the function $f(x) = \sqrt{x+1} + 6$.


[A] domain $\{x | x \geq 0\}$ [B] domain $\{x | x \geq 1\}$
[C] domain $\{x | x \geq -1\}$ [D] domain $\{x | x \leq 0\}$

18. Graph: $f(x) = \sqrt{x+1}$


[A]


[B]

[C]

[D]

19. Solve.

$$\sqrt{x+34} = x+14$$

[A] -9

[B] -18

[C] -18, -9

[D] no solution

20. Simplify. $\frac{2+i}{3-i}$

[A] $\frac{1}{2} + \frac{1}{2}i$ [B] $\frac{7}{8} + \frac{1}{8}i$ [C] $\frac{2}{3} + \frac{1}{3}i$ [D] $\frac{2}{3} - \frac{1}{3}i$

21. Solve using the quadratic formula. $x^2 - 2x + 17 = 0$

[A] $-1+8i, -1-8i$ [B] $1+8i, 1-8i$ [C] $-1+4i, -1-4i$ [D] $1+4i, 1-4i$

22. Solve. $x^4 - 12x^2 + 11 = 0$

[A] 1, $\sqrt{11}$ [B] $\pm 1, \pm \sqrt{11}$ [C] $\pm 1, \pm 11$ [D] 1, 11

23. When a rocket is shot into the air, its height h , in feet above the ground, is a function of time t , in seconds. The height of the rocket can be found using the formula $h(t) = 144t - 16t^2$.

a. Which is the rocket's height after 5 seconds?
b. After how many seconds will the rocket be at a height of 288 feet?

[A] a. 695 ft
b. 3

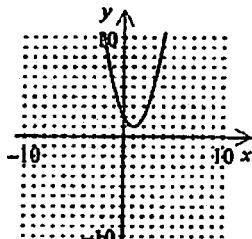
[B] a. 720 ft
b. 2 and 7

[C] a. 640 ft
b. 9

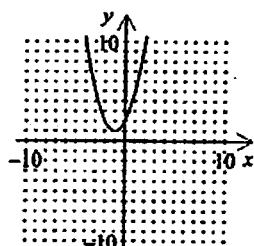
[D] a. 320 ft
b. 3 and 6

24. Solve. $x^2 + 2x \geq 8$

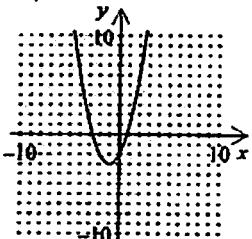
[A] $\{x \mid -2 \leq x \leq 4\}$

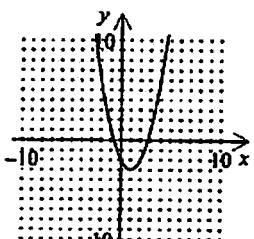

[B] $\{x \mid x \leq -4 \text{ or } x \geq 2\}$

[C] $\{x \mid -4 \leq x \leq 2\}$


[D] $\{x \mid x \leq -2 \text{ or } x \geq 4\}$

25. Find the graph of the equation. $f(x) = x^2 - 2x + 2$


[A]


[B]

[C]

[D]

26. If the revenue is given by $R = 120x - 0.04x^2$, find the value of x that yields the maximum revenue.

[A] 9000

[B] 1500

[C] 750

[D] 2000

27. Solve $5 + 2^x = 25$ and round your answer to the nearest hundredth.

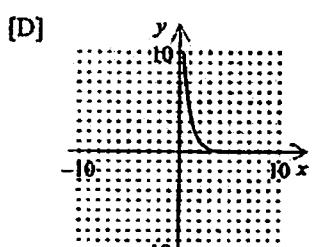
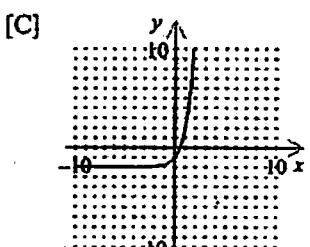
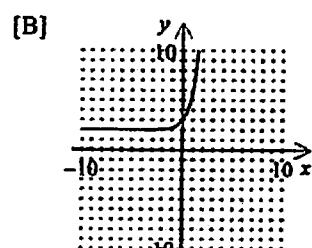
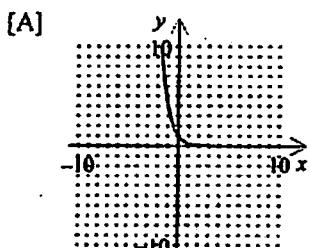
[A] $x = 4.32$ [B] $x = 2.73$ [C] $x = 4$ [D] $x = 2.32$

28. For the pair of functions, find $(g \circ f)(x)$.

$$f(x) = x + 3, g(x) = \sqrt{x+1}; x \geq -1$$

[A] $\sqrt{x+1} + 3$ [B] $\sqrt{x+3} - 1$ [C] $\sqrt{x+4}$ [D] $\sqrt{x+1}$

29. For the function $y = f(x) = 2x + 4$, find the inverse function $f^{-1}(x)$.





[A] $f^{-1}(x) = \frac{1}{2}x + 2$

[B] $f^{-1}(x) = x - 2$

[C] $f^{-1}(x) = \frac{1}{2}x - 2$

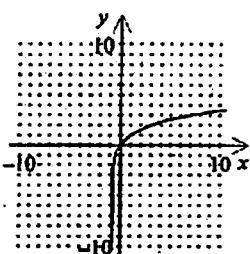
[D] $f^{-1}(x) = 4x + 2$

30. Identify the graph of the function. $f(x) = 4^x + 2$

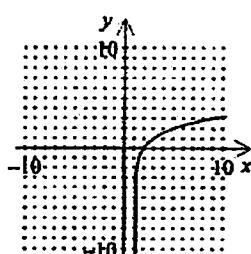
31. Which is the logarithm written as a single expression?

$$2 \log_b x - 4 \log_b y$$

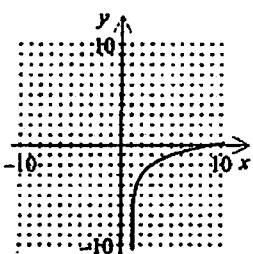
[A] $\log_b \left(\frac{x^2}{y^4} \right)$

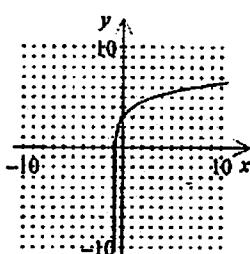

[B] $\log_b (2x^4y)$

[C] $\log_b \left(\frac{y^4}{x^2} \right)$


[D] $\log_b (x^2y^4)$

32. Identify the graph of the logarithmic function. $f(x) = \log_2(x+1)$


[A]


[B]

[C]

[D]

33. The current (I) in a wire varies directly as the voltage (v) and inversely as the resistance (r). If the current is 32 amps when the voltage is 192 volts and the resistance is 6 ohms, find the current when the voltage is 210 volts and the resistance is 12 ohms.

[A] 2520 amps

[B] 17.5 amps

[C] 35 amps

[D] 1260 amps

34. $\log_7(x+2) - \log_7(x-4) = \log_7 7$

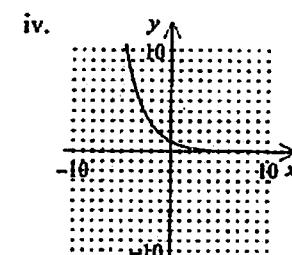
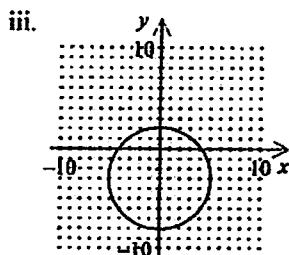
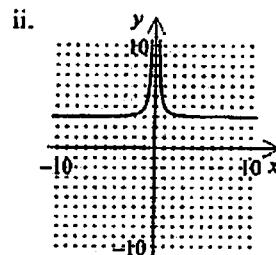
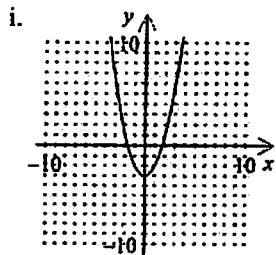
[A] $\frac{1}{3}$

[B] 5

[C] -3

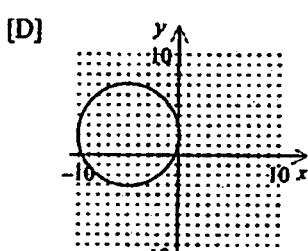
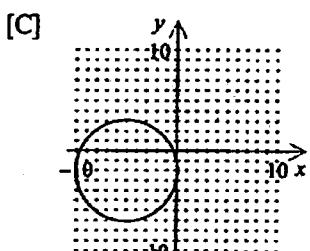
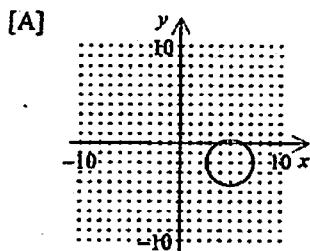
[D] 1

35. The number of bacteria present in a culture after t minutes is given by $B(t) = 10e^{kt}$. If there were 6073 bacteria present after 10 minutes, find k . Round your answer to the nearest thousandth.

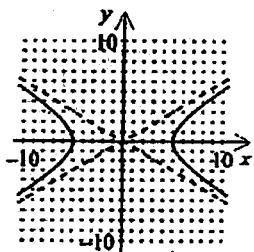




[A] $k \approx 64.091$

[B] $k \approx 0.692$

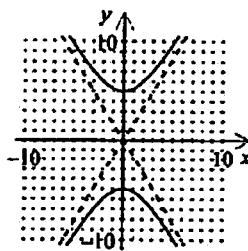
[C] $k \approx 0.641$




[D] $k \approx 6.409$

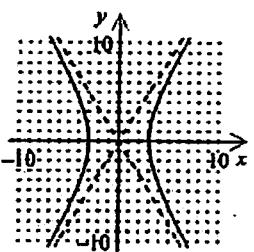
36. Which of the following are one-to-one functions?

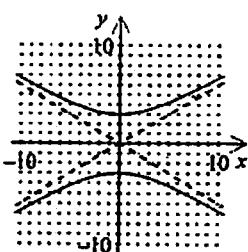

[A] i, ii and iv only [B] ii and iv only [C] iv only [D] i and iv only

37. Identify the graph of the circle given by the equation $(x+5)^2 + (y-2)^2 = 25$.



38. Identify the graph of the hyperbola given by the equation. $25x^2 - 9y^2 = 225$


[A]


[B]

[C]

[D]

39. Solve the system. $x^2 + y^2 = 10$

$$x^2 - y^2 = 8$$

[A] $(-3, -1), (3, 1)$

[B] $(-3, -1), (3, -1), (-3, 1), (3, 1)$

[C] $(-2, -4), (-2, 4), (2, -4), (2, 4)$

[D] no real solution

40. Write in expanded form.

$$(3a - b)^4$$

[A] $81a^4 + 108a^3b + 54a^2b^2 + 12ab^3 + b^4$

[B] $81a^4 - 12a^3b + 18a^2b^2 - 12ab^3 + b^4$

[C] $81a^4 - 108a^3b + 54a^2b^2 - 12ab^3 + b^4$

[D] $81a^4 + 12a^3b + 18a^2b^2 + 12ab^3 + b^4$